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ABSTRACT
Modeling user’s long-term and short-term interests is crucial for
accurate recommendation. However, since there is no manually
annotated label for user interests, existing approaches always fol-
low the paradigm of entangling these two aspects, which may lead
to inferior recommendation accuracy and interpretability. In this
paper, to address it, we propose a Contrastive learning framework
to disentangle Long and Short-term interests for Recommendation
(CLSR) with self-supervision. Specifically, we first propose two
separate encoders to independently capture user interests of differ-
ent time scales. We then extract long-term and short-term interests
proxies from the interaction sequences, which serve as pseudo la-
bels for user interests. Then pairwise contrastive tasks are designed
to supervise the similarity between interest representations and
their corresponding interest proxies. Finally, since the importance
of long-term and short-term interests is dynamically changing,
we propose to adaptively aggregate them through an attention-
based network for prediction. We conduct experiments on two
large-scale real-world datasets for e-commerce and short-video rec-
ommendation. Empirical results show that our CLSR consistently
outperforms all state-of-the-art models with significant improve-
ments: GAUC is improved by over 0.01, and NDCG is improved
by over 4%. Further counterfactual evaluations demonstrate that
stronger disentanglement of long and short-term interests is suc-
cessfully achieved by CLSR. The code and data are available at
https://github.com/tsinghua-fib-lab/CLSR.
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1 INTRODUCTION
With the deluge of information growing rapidly, recommender sys-
tems have been playing crucial roles in numerous online services,
such as news [2], e-commerce [51], videos [10, 27], etc. Specifically,
recommender systems provide personalized contents by first in-
ferring users’ interests from their historical interactions and then
retrieving items that meet these interests. In practice, however,
users’ interest are difficult to track since they tend to have both
stable long-term interests and dynamic short-term interests. For
example, a tech-savvy user may always be willing to browse elec-
tronics (long-term interest), while he may also exhibit interest in
clothes in a short period (short-term interest). As a result, accurately
modeling and distinguishing users’ long and short-term (LS-term)
interests is critical.

Let us first review the literature. Collaborative filtering (CF)
based recommenders [15, 16, 23, 35, 51] mainly capture the long-
term interests and ignore the sequential features, thus they are lim-
ited in modeling the dynamic short-term interests. Consequently,
sequential models [17, 41, 50, 55] were proposed to exploit con-
volutional neural networks or recurrent neural networks to learn
sequential features of user interests. However, those methods tend
to have short-term memory hence recommend items that are more
relevant to users’ recent behaviors. As a result, recently, a series of
approaches [2, 29, 47, 48] were proposed to combine CF-based rec-
ommenders and sequential recommenders to cover both long-term
and short-term interests. Specifically, in these approaches, CF-based
models such as matrix factorization are adopted for long-term inter-
ests, and sequential models are utilized to learn short-term interests.
However, whether LS-term interests can be effectively captured by
the corresponding models is not guaranteed, since they impose no
explicit supervision on the learned LS-term interests. In other words,
the learned LS-term interests in those methods can be entangled
with each other [28].

Overall speaking, disentangling LS-term interests faces the fol-
lowing challenges.
• First, LS-term interests reflect quite different aspects of user
preferences. Specifically, long-term interests can be regarded as
user’s overall preferences which can remain stable for a long pe-
riod of time, while short-term interests indicate a user’s dynamic
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preferences that evolve rapidly according to recent interactions.
Therefore, learning a unified representation of LS-term interests
is insufficient to capture such differences. On the contrary, it is
more proper to model the two aspects separately.

• Second, it is hard to obtain labeled data for learning LS-term
interests. The collected behavior log data only always contains
users’ implicit feedback such as clicks. Hence the separate mod-
eling of LS-term interests lacks explicit supervision for distin-
guishing the two aspects.

• Last, for the final prediction of users’ future interactions, both
long and short-term interests should be taken into consideration.
Nevertheless, the importance of two kinds of interests varies on
different user-item interactions. For example, users’ short-term
interests are more important when they continuously browse sim-
ilar items, while users’ behaviors are largely driven by long-term
interests when they switch to quite different items. Therefore, it
is critical but challenging to adaptively fuse these two aspects
for predicting future interactions.

To address the above challenges, we propose a contrastive learn-
ing framework that disentangles LS-term interests leveraging the
interaction sequences to build self-supervision signals. Specifically,
in order to independently capture LS-term interests, we propose
to decompose each interaction into three mechanisms: long-term
interests representation, short-term interests evolution, and inter-
action prediction. We design two separate encoders with differ-
ent dynamics over time to model LS-term interests respectively,
which addresses the first challenge. To overcome the key challenge
of lacking labeled data for LS-term interests, we propose to use
self-supervision [7]. We first generate proxy representations for
long/short-term interests by extracting users’ entire historical in-
teractions and recent interactions, respectively. We then supervise
the interest representations obtained from the two separate en-
coders to be more similar with their corresponding proxies than
the opposite proxies, in a contrastive manner. Different from exist-
ing methods which impose no explicit supervision on the learned
LS-term interests [2, 47], our self-supervised approach can learn
better-disentangled representations for LS-term interests and re-
move the dependency on labeled data. With the disentangled inter-
est representations, we design an attention-based fusion network
that adaptively aggregates the two aspects for prediction, which
solves the last challenge.

We evaluate the recommendation performance of our method on
two real-world datasets. Experimental results illustrate that CLSR
outperforms state-of-the-art (SOTA) methods with significant im-
provements. Specifically, AUC and GAUC are improved by over
0.02, and NDCG are improved by over 10.7%, which can be consid-
ered as quite promising gain by existing works [39, 47]. To further
investigate the effectiveness of the self-supervised disentanglement
design, we conduct counterfactual evaluations with intervened his-
torical interaction sequences which block long or short term inter-
ests. The results demonstrate that CLSR achieves steadily stronger
disentanglement of LS-term interests against SOTA methods.

In summary, the main contributions of this paper are as follows:

• We highlight the different dynamics of users’ long and short-
term interests, and take the pioneer step of disentangling the two
factors is critical for accurate recommendation.

• We propose a contrastive learning framework to separately cap-
ture LS-term interests. Disentangled representations are learned
with self-supervision by comparing with proxy representations
constructed from the original interaction sequences. An attention-
based fusion network is further designed which adaptively ag-
gregates LS-term interests to predict interactions.

• We conduct extensive experiments on real-world datasets. Ex-
perimental results validate that our proposed CLSR achieves
significant improvements against SOTA methods. Further coun-
terfactual analyses illustrate that much stronger disentanglement
of LS-term interests can be achieved by CLSR.
The remainder of the paper is organized as follows. We first

formulate the problem in Section 2 and introduce the proposed
method in Section 3. We then conduct experiments in Section 4,
and review the related works in Section 5. Finally, we conclude the
paper in Section 6.

2 PROBLEM FORMULATION
Notations. Let 𝑀 denote the number of users, and {𝒙𝒖 }𝑀

𝑢=1 de-
note the interaction sequences for all users. Each sequence 𝒙𝒖 =

[𝑥𝑢1 , 𝑥
𝑢
2 , ..., 𝑥

𝑢
𝑇𝑢
] denotes a list of items which are ordered by the

corresponding interaction timestamps. Here 𝑇𝑢 denotes the length
of user 𝑢’s interaction history, and each item 𝑥𝑢𝑡 is in [1, 𝑁 ], where
𝑁 denotes the number of items.

Since a user’s interaction history 𝒙𝒖 reflects both long and short-
term interests, the recommender system will first learn LS-term
interests from 𝒙𝒖 , and then predict future interactions based on
the two aspects. We then can formulate the problem of learning
LS-term interests for recommendation as follows:
Input: The historical interaction sequences for all users {𝒙𝒖 }𝑀

𝑢=1.
Output:Apredictivemodel that estimates the probability of whether
a user will click an item, considering both LS-term interests.

3 METHODOLOGY
In this section, we elaborate on the proposed Contrastive learning
framework of Long and Short-term interests for Recommendation
(CLSR).

3.1 User Interests Modeling
Since users’ LS-term interests are quite different in terms of the
dynamics over time, it is more appropriate to model the two aspects
separately instead of using a unified representation to express them.
Specifically, long-term interests are relatively stable, while short-
term interests are dynamic and changing frequently. Meanwhile,
each interaction is determined by both aspects as well as the target
item. Therefore, we propose to frame user interests modeling as
the following three separate mechanisms:

𝜁 =


𝑈𝑙 = 𝑓1 (𝑈 ), (1)

𝑈
(𝑡 )
𝑠 = 𝑓2 (𝑈 (𝑡−1)

𝑠 ,𝑉 (𝑡−1) , 𝑌 (𝑡−1) ,𝑈 ), (2)

𝑌 (𝑡 ) = 𝑓3 (𝑈𝑙 ,𝑈
(𝑡 )
𝑠 ,𝑉 (𝑡 ) ,𝑈 ), (3)

where 𝑓1, 𝑓2 and 𝑓3 are the underlying functions for user 𝑈 ’s long-
term interests (𝑈𝑙 ), short term interests (𝑈 (𝑡 )

𝑠 ) and interaction (𝑌 (𝑡 ) )
with item 𝑉 (𝑡 ) . Current and last timestamps are denoted as 𝑡 and
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𝑼

𝑼𝒍 𝑼𝒔
(𝒕) 𝑽(𝒕)

𝒀(𝒕)

𝒇𝟏 Long-term Interests
Representation

𝒇𝟑

𝒇𝟐

Interaction
Prediction

Short-term Interests
Evolution

𝑼: user
𝑼𝒍: long-term interests
𝑼𝒔: short-term interests

𝒕: timestamp
𝑽: item
𝒀: interaction

time: 𝑡

Figure 1: User interests modeling 𝜁 (best viewed in color)
which consists of three mechanisms, namely long-term in-
terests representation (red edges), short-term interests evo-
lution (blue edges) and interaction prediction (yellow edges).

𝑡 − 1, respectively. It is worthwhile noting that 𝑈 denotes user
profile, which contains the user ID and the interaction history 𝒙𝒖 .

The proposed user interests modeling 𝜁 decomposes each interac-
tion into three mechanisms: 𝑓1 long-term interests representation,
𝑓2 short-term interests evolution, and 𝑓3 interaction prediction,
which are briefly illustrated in Figure 1. We now explain the details
of the three mechanisms.
• Long-term Interests Representation in Eqn (1). Long-term
interests reflect a holistic view of user preferences, and hence it
is stable and less affected by recent interactions. In other words,
long-term interests can be inferred from the entire historical
interaction sequence, thus we include𝑈 as the input of 𝑓1, which
contains the interaction history 𝒙𝒖 .

• Short-term Interests Evolution in Eqn (2). Short-term inter-
ests are evolving as users continuously interact with recom-
mended items [50]. For example, users may establish new inter-
ests after clicking an item. Meanwhile, users may also gradually
lose certain interests. That is to say, short-term interests are time-
dependent variables, and thus in 𝑓2, short-term interests𝑈 (𝑡 )

𝑠 at
timestamp 𝑡 are evolved recursively from𝑈

(𝑡−1)
𝑠 , affected by the

last interaction 𝑌 𝑡−1 with item 𝑉 (𝑡−1) .
• Interaction Prediction in Eqn (3). When predicting future
interactions, whether long or short-term interests play a more
important role depends on a wide variety of aspects, including
the target item 𝑉 (𝑡 ) and the interaction history 𝒙𝒖 of 𝑈 [47].
Therefore, we fuse 𝑈𝑙 and 𝑈

(𝑡 )
𝑠 according to 𝑉 (𝑡 ) and 𝑈 in an

adaptive manner to accurately predict interactions.
Disentangling LS-term interests means that 𝑈𝑙 only captures

long-term interests and𝑈𝑠 models pure short-term interests. Such
disentanglement is helpful to achieve interpretable and controllable
recommendation, since we can track and tune the importance of
each aspect by adjusting the fusion weights. Meanwhile, effective
adjustment of LS-term interests requires the learned representations
to only contain the information of the desired aspect. Take the linear
case as a toy example, suppose a recommendation model entangles
LS-term interests as follows,

𝑈 ′
𝑙
= 0.6𝑈𝑙 + 0.4𝑈𝑠 , 𝑈

′
𝑠 = 0.4𝑈𝑙 + 0.6𝑈𝑠 , (4)
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𝒕
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𝒖𝒙𝟐
𝒖
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…
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𝒖,𝒕
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…
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Figure 2: Our proposed CLSR framework based on self-
supervised learning. A) contrastive tasks on the similarity
between representations and proxies of LS-term interests to
enhance disentanglement; B) long-term interests encoder 𝜙 ;
C) short-term interests encoder 𝜓 ; D) adaptive fusion of LS-
term interests with attention on the target item and histori-
cal interactions; E) interaction prediction network.
where 𝑈 ′

𝑙
and 𝑈 ′

𝑠 are the learned entangled interests. Given the
fusion weights (importance) of LS-term interests as 0.8 and 0.2
respectively, the actual fused interests are computed as follows,

𝑈 ′
𝑓 𝑢𝑠𝑒

= 0.8𝑈 ′
𝑙
+ 0.2𝑈 ′

𝑠 = 0.56𝑈𝑙 + 0.44𝑈𝑠 , (5)

which is quite different from the desired interests.
However, disentangling LS-term interests is challenging since

there is no labeled data for 𝑈𝑙 and 𝑈𝑠 . We now elaborate on our
contrastive learning framework which can achieve strong disentan-
glement with self-supervision.

3.2 Our Self-supervised Implementation
In this section, we first provide two separate encoders to implement
𝑓1 and 𝑓2 which learn representations of LS-term interests. Then
we introduce our designed contrastive tasks to achieve disentangle-
ment with self-supervision. Last, we introduce the adaptive fusion
model based on attention technique to accomplish 𝑓3. The overview
of CLSR is illustrated in Figure 2.

3.2.1 GeneratingQuery Vectors for LS-term Interests. Moti-
vated by recent works [2, 29, 47, 48] that learn LS-term interests
separately with two different models, we design two separate at-
tentive encoders, 𝜙 and𝜓 , to capture the two aspects, respectively.
First, we generate query vectors for LS-term interests as follows,

𝒒𝒖𝒍 = Embed(𝑢), (6)

𝒒𝒖,𝒕𝒔 = GRU({𝑥𝑢1 , · · · , 𝑥
𝑢
𝑡 }), (7)

where we use a look-up embedding table and a Gated Recurrent
Unit (GRU) [9] to capture different dynamics over time. In order
to impose extra self-supervision on embedding similarity, all the
embeddings need to be in the same semantic space. Thus, we use
the historical sequence of items as keys of the attentive encoders,
thus the obtained LS-term interests representations are in the same
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item embedding space as follows,
𝒖𝒕𝒍 = 𝜙 (𝒒𝒖𝒍 , {𝑥

𝑢
1 , · · · , 𝑥

𝑢
𝑡 }), (8)

𝒖𝒕𝒔 = 𝜓 (𝒒𝒖,𝒕𝒔 , {𝑥𝑢1 , · · · , 𝑥
𝑢
𝑡 }), (9)

where 𝒖𝒕
𝒍
and 𝒖𝒕𝒔 are the learned representations of LS-term interests.

We now introduce the proposed encoders for LS-term interests.

3.2.2 Long-term Interests Encoder. Figure 2 (B) illustrates the
proposed long-term interests encoder 𝜙 . We use attention pooling
to extract long-term interests representations, and the attention
score of each item 𝑥𝑢

𝑗
can be computed as follows,

𝒗 𝑗 =𝑾𝒍𝑬 (𝑥𝑢𝑗 ), (10)
𝛼 𝑗 = 𝜏𝑙 (𝒗𝒋 ∥𝒒𝒖𝒍 ∥(𝒗𝒋 − 𝒒𝒖𝒍 )∥(𝒗𝒋 · 𝒒

𝒖
𝒍 )), (11)

𝑎 𝑗 =
𝑒𝑥𝑝 (𝛼 𝑗 )∑𝑡
𝑖=1 𝑒𝑥𝑝 (𝛼𝑖 )

, (12)

where𝑾𝒍 is a transformation matrix, 𝜏𝑙 is a multi-layer perceptrons
(MLP) network, and ∥ denotes the concatenation of embeddings.
The final learned long-term interests representation is a weighted
aggregation of the entire interaction history, with weights com-
puted from the above attentive network, formulated as follows,

𝒖𝒕𝒍 =
𝑡∑︁
𝑗=1

𝑎 𝑗 · 𝑬 (𝑥𝑢𝑗 ). (13)

3.2.3 Short-term Interests Encoder. Sequential patterns of user
interaction play a crucial role in short-term interests modeling, thus
we utilize another attentive network on top of a recurrent neural
network (RNN). Specifically, we feed the historical item embeddings
to a RNN model and use the output of RNN as the keys, which can
be formulated as follows,

{𝒐𝒖1 , ..., 𝒐
𝒖
𝒕 } = 𝜌 ({𝑬 (𝑥𝑢1 ), ..., 𝑬 (𝑥

𝑢
𝑡 )}), (14)

𝒗𝒋 =𝑾𝒔𝒐
𝒖
𝒋 , (15)

where𝑾𝒔 is a transformation matrix and 𝜌 represents a RNNmodel.
In Section 4, we conduct experiments to evaluate different imple-
mentations of the RNN model, including LSTM [18], GRU [9] and
Time4LSTM [47]. Similar as Eqn (18) and (19), we use 𝒒𝒖,𝒕𝒔 as the
query vector, and obtain attention scores 𝑏𝑘 . Then the learned
representation for short-term interests can be computed as follows,

𝒖𝒕𝒔 =

𝑡∑︁
𝑗=1

𝑏 𝑗 · 𝒐𝑢𝑗 . (16)

Although separate encoders are adopted, disentanglement of
LS-term interests is not guaranteed since 𝒖𝒕

𝒍
and 𝒖𝒕𝒔 are extracted

in an unsupervised manner [28]. Particularly, there is no labeled
data to supervise the learned interests representations. Therefore,
we propose to design contrastive tasks which can achieve disen-
tanglement with self-supervision and overcome the challenge of
lacking labeled data.

3.2.4 Self-supervisedDisentanglement of LS-Term Interests.
As introduced previously, long-term interests provide a holistic view
of user preferences which summarize the entire historical inter-
actions, while short-term interests evolve dynamically over time
which reflect recent interactions. Therefore, we can obtain proxies
for LS-term interests from the interaction sequences themselves to

supervise the two interests encoders. Specifically, we calculate the
mean representation of the entire interaction history as the proxy
for long-term interests, and use the average representation of recent
𝑘 interactions as the proxy for short-term interests. Formally, the
proxies of LS-term interests for a given user 𝑢 at timestamp 𝑡 can
be calculated as follows,

𝒑𝒖,𝒕
𝒍

= MEAN({𝑥𝑢1 , · · · , 𝑥
𝑢
𝑡 }) =

1
𝑡

𝑡∑︁
𝑗=1

𝑬 (𝑥𝑢𝑗 ), (17)

𝒑𝒖,𝒕
𝒔 = MEAN({𝑥𝑢

𝑡−𝑘+1, · · · , 𝑥
𝑢
𝑡 }) =

1
𝑘

𝑘∑︁
𝑗=1

𝑬 (𝑥𝑢𝑡−𝑗+1), (18)

where 𝑬 (𝑥) means the embedding of item 𝑥 . Note that we only cal-
culate proxies when the sequence length is longer than a threshold
𝑙𝑡 , since there is no need to distinguish long and short-term if the
whole sequence only contains a few items [26]. The threshold 𝑙𝑡 ,
the length of the recent-behavior sequence 𝑘 are hyper-parameters
in our method. Furthermore, we use mean pooling here for its sim-
plicity and the performance turns out to be good enough. In fact,
our self-supervised paradigm is capable of exploiting more complex
design for proxies which we leave for future work.

With proxies serving as labels, we can utilize them to super-
vise the disentanglement of LS-term interests. Specifically, we per-
form contrastive learning between the encoder outputs and proxies,
which requires the learned representations of LS-term interests to
be more similar to their corresponding proxies than the opposite
proxies. We illustrate the contrastive tasks in Figure 2 (A). Formally,
there are four contrastive tasks as follows,

𝑠𝑖𝑚(𝒖𝒕𝒍 ,𝒑
𝒖,𝒕
𝒍

) > 𝑠𝑖𝑚(𝒖𝒕𝒍 ,𝒑
𝒖,𝒕
𝒔 ), (19)

𝑠𝑖𝑚(𝒑𝒖,𝒕
𝒍

, 𝒖𝒕𝒍 ) > 𝑠𝑖𝑚(𝒑𝒖,𝒕
𝒍

, 𝒖𝒕𝒔 ), (20)

𝑠𝑖𝑚(𝒖𝒕𝒔 ,𝒑
𝒖,𝒕
𝒔 ) > 𝑠𝑖𝑚(𝒖𝒕𝒔 ,𝒑

𝒖,𝒕
𝒍

), (21)

𝑠𝑖𝑚(𝒑𝒖,𝒕
𝒔 , 𝒖𝒕𝒔 ) > 𝑠𝑖𝑚(𝒑𝒖,𝒕

𝒔 , 𝒖𝒕𝒍 ), (22)

where Eqn (19)-(20) supervise long-term interests, and Eqn (21)-(22)
supervise short-term interests, and 𝑠𝑖𝑚(·, ·) measures embedding
similarity. Take long-term interests modeling as an example, Eqn
(19) encourages the learned long-term interests representation, 𝒖𝒕

𝒍
,

to be more similar to the long-term proxy, 𝒑𝒖,𝒕
𝒍

, than to the short-
term proxy, 𝒑𝒖,𝒕

𝒔 . Meanwhile, Eqn (20) requires that 𝒖𝒕
𝒍
is closer

to 𝒑𝒖,𝒕
𝒍

compared with the short-term interests representation, 𝒖𝒕𝒔 .
With four symmetric contrastive tasks on the similarity between
encoder outputs and proxies, we add self-supervision on LS-term
interests modeling which can achieve stronger disentanglement
compared with existing unsupervised approaches.

We implement two pairwise loss functions based on Bayesian
Personalized Ranking (BPR) [35] and triplet loss to accomplish
contrastive learning in Eqn (19)-(22). Formally, the two loss func-
tions, which use inner product and Euclidean distance to capture
embedding similarity, are computed as follows,

Lbpr (𝑎, 𝑝, 𝑞) = 𝜎 (⟨𝑎, 𝑞⟩ − ⟨𝑎, 𝑝⟩), (23)
Ltri (𝑎, 𝑝, 𝑞) = max{𝑑 (𝑎, 𝑝) − 𝑑 (𝑎, 𝑞) +𝑚, 0}, (24)

where 𝜎 is the softplus activation function, ⟨·, ·⟩ denotes inner prod-
uct of two embeddings, 𝑑 denotes the Euclidean distance, and𝑚
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denotes a positive margin value. Both L𝑏𝑝𝑟 and L𝑡𝑟𝑖 are designed
for making the anchor 𝑎 more similar to the positive sample 𝑝 than
the negative sample 𝑞. Thus the contrastive loss for self-supervised
disentanglement of LS-term interests can computed as follows,

L𝑢,𝑡
con = 𝑓 (𝒖𝑙 ,𝒑𝑙 ,𝒑𝑠 ) + 𝑓 (𝒑𝑙 , 𝒖𝑙 , 𝒖𝑠 ) + 𝑓 (𝒖𝑠 ,𝒑𝑠 ,𝒑𝑙 ) + 𝑓 (𝒑𝑠 , 𝒖𝑠 , 𝒖𝑙 )

(25)
where we omit the superscript of interest representations and prox-
ies, and 𝑓 can be either L𝑏𝑝𝑟 or L𝑡𝑟𝑖 .
Remark. Users’ LS-term interests can also overlap with each other
to some extent. For example, a user who only purchases clothes
on an e-commerce application tends to have consistent LS-term
interests. Therefore, unlike existing disentangled recommendation
approaches [43, 49] which add an independence constraint forcing
the learned disentangled factors to be dissimilar with each other,
we do not include such regularization term and only supervise
the learned representations of LS-term interests to be similar with
their corresponding proxies. This is also why we do not use loss
functions like InfoNCE [33] which impose too strong punishment
on the similarity between opposite encoders and proxies.

In summary, we implement two separate encoders 𝜙 and 𝜓 to
learn representations for LS-term interests, respectively. In order
to achieve disentanglement of LS-term interests, we compute prox-
ies from the historical interaction sequences. We further propose
contrastive-learning loss functions that guide the two encoders
only to capture the desired aspect in a self-supervised manner.

3.2.5 Adaptive Fusion for Interaction Prediction. With the
learned disentangled representations by self-supervised learning,
how to aggregate the two aspects to predict interactions remains
a challenge. Simple aggregators, such as sum and concatenation,
assume that contributions of LS-term interests are fixed, which is
invalid in many cases. In fact, whether long or short-term one is
more important depends on the historical sequence. For example,
users are mainly driven by short-term interests when they are con-
tinuously browsing items from the same category. Meanwhile, the
importance of LS-term interests also depends on the target item.
For instance, a sports lover may still click on a recommended bicy-
cle due to long-term interests, even after he/she browses several
books. Therefore, we include both the historical sequence and the
target item as input of the aggregator, where historical sequence is
compressed with a GRU. The proposed attention-based adaptive
fusion model is illustrated in Figure 2 (D), which dynamically de-
termines the importance of LS-term interests to aggregate 𝒖𝒕

𝒍
and

𝒖𝒕𝒔 . Formally, the final fused interests are obtained as follows,

𝒉𝒖𝒕 = GRU({𝑬 (𝑥𝑢1 ), ..., 𝑬 (𝑥
𝑢
𝑡 )}), (26)

𝛼 = 𝜎 (𝜏𝑓 (𝒉𝑢𝑡 ∥𝑬 (𝑥𝑢𝑡+1)∥𝒖
𝒕
𝒍 ∥𝒖

𝒕
𝒔 ), (27)

𝒖𝑡 = 𝛼 · 𝒖𝒕𝒍 + (1 − 𝛼) · 𝒖𝒕𝒔 , (28)

where 𝜎 is the sigmoid activation function, and 𝜏𝑓 is a MLP for fu-
sion. Here 𝛼 denotes the estimated fusion weight based on historical
interactions, target item, and user’s LS-term interests.

To predict the interaction, we use the widely adopted two-layer
MLP [47] shown in Figure 2 (E). Then the estimated score given a
user 𝑢 and an item 𝑣 at timestamp 𝑡 + 1 can be predicted as follows,

𝑦𝑡+1𝑢,𝑣 = MLP(𝒖𝑡 ∥𝑬 (𝑣)). (29)

Table 1: Statistics of the two datasets used in experiments.

Dataset Users Items Instances Average Length
Taobao 36,915 64,138 1,471,155 39.85
Kuaishou 60,813 292,286 14,952,659 245.88

Following the existing works’ settings[47], we use the negative
log-likelihood loss function as follows,

L𝑢,𝑡
rec = − 1

𝑁

∑︁
𝑣∈O

𝑦𝑡+1𝑢,𝑣 log(𝑦𝑡+1𝑢,𝑣 ) + (1 − 𝑦𝑡+1𝑢,𝑣 ) log(1 − 𝑦𝑡+1𝑢,𝑣 ), (30)

where O is the set composed of training pairs of one positive item
𝑥𝑢
𝑡+1 and 𝑁 − 1 sampled negative items. We train the model in
an end-to-end manner with multi-task learning on two objectives.
Specifically, the joint loss function with a hyper-parameter 𝛽 to
balance objectives, can be formulated as follows,

L =

𝑀∑︁
𝑢=1

𝑇𝑢∑︁
𝑡=1

(L𝑢,𝑡
rec + 𝛽L𝑢,𝑡

con) + 𝜆∥Θ∥2, (31)

where 𝜆∥Θ∥2 denotes the 𝐿2 regularization for addressing over-
fitting. The computation complexity of our implementation isO((𝑀+
𝑁 )𝑑 +𝑄) where𝑄 denotes the complexity of MLP and GRU, which
is on par with the state-of-the-art SLi-Rec method [47].

4 EXPERIMENTS
In this section, we conduct experiments to show the effectiveness
of the proposed contrastive learning framework. Specifically, we
aim to answer the following research questions,
• RQ1:How does the proposed framework perform compared with
state-of-the-art recommendation models?

• RQ2: Can CLSR achieves stronger disentanglement of LS-term
interests against existing unsupervised baselines?

• RQ3:What is the effect of different components in CLSR?
Datasets. We conduct experiments on two datasets collected from
real-world e-commerce and video platforms, Taobao1 andKuaishou2.
Basic statistics of the two datasets are summarized in Table 1, where
Average Length indicates the average length of user interaction
sequences. We leave the details of the datasets in Section A.1.
Baselines and Metrics. We compare CLSR with state-of-the-art
methods. With respect to long-term interests modeling, we include
NCF [16], DIN [51] and LightGCN[14]. For short-term interests
modeling, we compare with Caser [41], GRU4REC [17], DIEN
[50], SASRec [20] and SURGE [6]. We also include SLi-Rec [47]
which is the state-of-the-art model of LS-term interests modeling.
We evaluate the models with two widely-adopted accuracy met-
rics including AUC and GAUC [51], as well as two commonly
used ranking metrics MRR and NDCG@K. We leave the details
of baselines, implementations, and hyper-parameters in Section
A.2-A.3.

4.1 Overall Performance Comparison (RQ1)
We illustrate the overall performance on two adopted datasets in
Table 2. From the results, we have the following observations:

1https://www.taobao.com
2https://www.kuaishou.com

https://www.taobao.com
https://www.kuaishou.com
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Table 2: Overall performance on Taobao and Kuaishou datasets. Underline means the best two baselines, bold means p-value
< 0.05, * means p-value < 0.01, and ** means p-value < 0.001.

Dataset Taobao Kuaishou
Category Method AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2

Long-term
NCF 0.7128 0.7221 0.1446 0.0829 0.5559 0.5531 0.7734 0.8327
DIN 0.7637 0.8524 0.3091 0.2352 0.6160 0.7483 0.8863 0.9160

LightGCN 0.7483 0.7513 0.1669 0.1012 0.6403 0.6407 0.8175 0.8653

Short-term

Caser 0.8312 0.8499 0.3508 0.2890 0.7795 0.8097 0.9100 0.9336
GRU4REC 0.8635 0.8680 0.3993 0.3422 0.8156 0.8298 0.9166 0.9384
DIEN 0.8477 0.8745 0.4011 0.3404 0.7037 0.7800 0.9030 0.9284
SASRec 0.8598 0.8635 0.3915 0.3340 0.8199 0.8293 0.9161 0.9380
SURGE 0.8906 0.8888 0.4228 0.3625 0.8525 0.8610 0.9316 0.9495

LS-term SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128 0.9075 0.9318
Ours 0.8953∗∗ 0.8936∗∗ 0.4372∗∗ 0.3788∗∗ 0.8563 0.8718 0.9382∗ 0.9544∗

• Short-term models generally performs better than long-
term models. Long-term models fail to capture temporal pat-
terns of user interactions, hence their performance is rather poor.
From the results, we can observe that AUC of NCF, DIN, and
LightGCN are all less than 0.8 on Taobao dataset and less than
0.7 on Kuaishou dataset. On the other hand, short-term models
outperform long-termmodels in most cases. For example, SURGE
is the best baseline on both datasets, which uses graph convolu-
tional propagation and graph pooling to capture the dynamics
of user interests. The better performance of short-term models
comes from their ability to capture the sequential pattern of user
interactions. In fact, we conduct data analysis on the interaction
sequences and discover that, in average, over 31% of interacted
items are of the same category as the previous item, which veri-
fies the sequential pattern and explains the better performance
of short-term models.

• Joint modeling of LS-term interests does not always bring
performance gains. SLi-Rec is the SOTA approach that models
both LS-term interests. However, the two aspects are entangled
with each other, which increases model redundancy and leads to
inferior accuracy. Results demonstrate that SLi-Rec is not consis-
tently effective across different metrics and datasets. For example,
SLi-Rec is the best baseline on Taobao dataset with respect to
AUC, but its ranking performance is poorer than GRU4REC by
about 10%, indicating that it is insufficient to disentangle LS-term
interests with no explicit supervision.

• Disentangled modeling of LS-term interests can achieve
significant improvements. CLSR outperforms baselines with
significant progress. Specifically, CLSR improves GAUC by about
0.005 (p-value < 0.001) on Taobao dataset and 0.01 (p-value < 0.05)
on Kuaishou dataset, agaisnt SOTA methods. Besides, NDCG is
improved by about 5% on Taobao dataset. The consistent and
significant progress indicate that disentangling LS-term interests
is critical for accurate recommendation.

4.2 Study on Disentanglement of Long and
Short-Term Interests (RQ2)

Both SLi-Rec and CLSR explicitly model LS-term interests, however,
CLSR achieves the best performance while SLi-Rec shows inferior
accuracy. We argue that it is because SLi-Rec entangles LS-term

AUC on Taobao dataset

Long Short Both
0.75

0.80

0.85

0.90
SLi-Rec

Ours

AUC on Kuaishou dataset

Long Short Both
0.80

0.82

0.84

0.86
SLi-Rec

Ours

Figure 3: Comparison of using single and both interests be-
tween CLSR and Sli-Rec.

interests which increases the internal dependency of the model
and leads to poor performance. On the contrary, CLSR disentangles
LS-term interests with the help of self-supervision. In this section,
we empirically prove that stronger disentanglement of LS-term
interests is indeed achieved by CLSR.

4.2.1 Performance of One-side Interests. In CLSR, we utilize
two separate representations for LS-term interests. Therefore, it is
crucial that each side only captures the desired single aspect. In
order to evaluate the effectiveness of each side, we reserve one-side
interests and discard the other side of CLSR and SLi-Rec. Results on
two datasets are illustrated in Figure 3, from which we can observe
that CLSR outperforms SLi-Rec in all cases. Specifically, on Taobao
dataset, CLSR improves AUC against SLi-Rec by about 0.03 with
short-term interests and full interests. On Kuaishou dataset, the im-
provements of AUC are about 0.1, 0.2, and 0.4 for long-term interests,
short-term interests, and full interests, respectively. It indicates that
CLSR attains more meaningful representations for both LS-term
interests. Moreover, for both methods on both datasets, combining
LS-term interests achieves better performance than using one-side
interests. This further supports our motivation to model both long
and short-term interests for accurate recommendation.

4.2.2 Counterfactual Evaluation. Learning disentangled repre-
sentations of underlying factors is very helpful especially when
the importance of different factors changes [37, 38, 49]. For exam-
ple, behaviors of higher costs, such as purchase (cost of money) in
Taobao dataset and like (cost of time) in Kuaishou dataset, tend to be
more driven by users’ long-term interests, and behaviors of lower
costs such as click in both datasets indicate more about short-term
interests, which has been acknowledged by existing works [11].
Therefore, to investigate whether CLSR achieves disentanglement
of LS-term interests, we design counterfactual evaluations where
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Table 3: Comparison between CLSR and SLi-Rec on predict-
ing click and purchase/like.

Dataset Method Click Purchase/Like
AUC AVG(𝛼 ) AUC AVG(𝛼 )

Taobao SLi-Rec 0.8572 0.4651 0.8288 0.4350 (-6.47%)
CLSR 0.8885 0.3439 0.8616 0.3568 (+3.75%)

Kuaishou SLi-Rec 0.8153 0.7259 0.7924 0.7543 (+3.91%)
CLSR 0.8618 0.2528 0.7946 0.2757 (+9.06%)

Table 4: Counterfactual evaluation under shuffle protocol.

Dataset Method Click Purchase/Like
AUC MRR AUC MRR

Taobao SLi-Rec 0.8092 0.2292 0.8480 0.3151
CLSR 0.8413 0.2744 0.8790 0.4194

Kuaishou SLi-Rec 0.7992 0.9088 0.8165 0.9113
CLSR 0.8431 0.9380 0.8197 0.9167

the importance of different interests changes. Specifically, we use
models well-trained on click data to predict both clicked items and
purchased/liked items, where the importance of LS-term interests
is different. Since purchase/like behavior reflects more long-term
interests, the importance of long-term interests is supposed to be
higher when predicting purchase/like than click. In other words,
when the model predicts purchase/like behavior, it is expected that
the attention weight for long-term interests when fusing the two
aspects, i.e. 𝛼 , to be also larger than predicting click behavior.

Table 3 illustrates the AUC and the average of 𝛼 for clicked items
and purchased/liked items. We have the following findings:
• CLSR outperforms SLi-Rec for all behaviors. Although predicting
purchase/like with models trained on click data is challenging,
AUC of CLSR is significantly larger than SLi-Rec by over 0.03.
Meanwhile, the average 𝛼 of CLSR is much lower in all cases,
unlike SLi-Rec whose average 𝛼 is even over 0.7 on Kuaishou
dataset. In fact, low 𝛼 in CLSR is consistent with previous find-
ings in Table 2 that long-term interests are less important than
short-term interests, which means that LS-term interests are
successfully disentangled in CLSR. On the contrary, high 𝛼 in
SLi-Rec indicates that the learned long-term interests represen-
tations contain much information of the undesired short-term
interests, i.e. the two aspects entangles with each other.

• Since purchase/like reflects more long-term interests than click,
𝛼 is supposed to be also larger when predicting purchase/click.
On Taobao dataset, 𝛼 of CLSR for purchase behavior is larger
than click by about 4%. However, for SLi-Rec, 𝛼 for purchase is
even less than click by over 6%. On Kuaishou dataset, though 𝛼

for like is larger than click in both SLi-Rec and CLSR, the relative
increment of 𝛼 for CLSR is over two times larger than SLi-Rec
(+9.06% v.s. +3.91%). This further validates that CLSR achieves
much stronger disentanglement of LS-term interests.
Meanwhile, we also evaluate under special cases where long

or short-term interests are blocked by re-arranging interaction
sequences with two protocols, namely shuffle and truncate, as illus-
trated in Figure 4. The details are as follows.
• Shuffle: The historical sequence is randomly shuffled, and thus
short-term interests are removed under this protocol.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓
factual: original

𝑼𝒍 𝑼𝒔

𝒀

𝒗𝟒 𝒗𝟓
counterfactual: truncate

𝑼𝒍 𝑼𝒔

𝒀

𝒗𝟐 𝒗𝟑 𝒗𝟓 𝒗𝟏 𝒗𝟒
counterfactual: shuffle

𝑼𝒍 𝑼𝒔

𝒀

Figure 4: Counterfactual evaluation. Shuffle: short-term in-
terests are removed by shuffling. Truncate: long-term inter-
ests are weakened by discarding early history.
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Figure 5: Counterfactual evaluation under truncate protocol.
(a) CLSR. (b) CLSR with only long-term interests.

• Truncate: Early history is discarded and only recent history is
available. Thus long-term interests are weakened.
Table 4 shows the results under shuffle protocol on two datasets.

Since shuffling operation blocks short-term interests, predicting
click behavior is much more difficult than the original case, while
predicting purchase behavior is relatively easier. We can observe
that the results in Table 4 compared with Table 3 is consistent with
the expectation. Specifically, for both SLi-Rec and CLSR, AUC de-
creases by over 0.04 and increases by about 0.02 on click-prediction
task and purchase/like-prediction task, respectively. Meanwhile,
CLSR improves the AUC of click-prediction by over 0.04, and im-
proves theMRR of purchase-prediction by over 30%, against SLi-Rec.
Although short-term interests are invalid under this protocol, CLSR
can still achieves better performance since LS-term interests are
disentangled and long-term interests can still take effect.

We further present the results of CLSR under truncate protocol
with varying available length (𝑘) of historical sequences in Figure
5 (a). We can observe that the performance of purchase prediction
improves significantly as 𝑘 grows. Meanwhile, the performance
of click prediction increases much slower when 𝑘 grows larger.
This observation verifies our assumption that short-term interests
can be effectively captured by mining the recent history, while for
long-term interests, it is essential to take the entire history into con-
sideration. In addition, we also show the performance of only using
long-term interests representation under truncate protocol in Figure
5 (b). We can find that the accuracy of purchase-prediction increases
drastically as 𝑘 getting larger, while the accuracy of click-prediction
is barely changed. The different trends of click and purchase tasks
confirm that the learned long-term interests representations only
capture the desired interests and distill short-term interests.

In summary, by comparing CLSR and SLi-Rec, which both ex-
plicitly model LS-term interests, we empirically show that disentan-
glement of the two aspects is the reason of better recommendation
performance. Moreover, it is insufficient to disentangle LS-term
interests in an unsupervised way, and CLSR effectively overcomes
the challenge of lacking labeled data with self-supervision.
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(a) Abalation of contrastive learning
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Figure 6: (a) Ablation study of contrastive loss. (b) Hyper-
parameter study of 𝛽 .
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Figure 7: Comparison between adaptive and fixed fusion.

4.3 Ablation and Hyper-parameter Study (RQ3)
4.3.1 Contrastive Learning. Contrastive tasks on the similarity
between learned representations and proxies for LS-term interests
help achieve stronger disentanglement than existing unsupervised
methods. We conduct ablation study to compare the performance
of CLSR with and without the contrastive loss Lcon. In addition,
we also evaluate the performance of replacing the short-term in-
terests encoder𝜓 with DIEN. Figure 6 (a) illustrates the results on
Kuaishou dataset. We can find that GAUC of CLSR drops over 0.01
after removing the contrastive tasks which verifies the necessity
of self-supervision. Meanwhile, adding self-supervision can also
significantly improve the performance of DIEN, which means that
CLSR can serve as a general framework to disentangle LS-term
interests for existing recommendation models. We also investigate
the performance under different loss weights of Lcon. Figure 6 (b)
illustrates the results on Kuaishou dataset. We can observe that 0.1
is an optimal value, and too large 𝛽 may contradict with the main
interaction prediction task which leads to low accuracy.

4.3.2 Adaptive Fusion of LS-Term Interests. In CLSR, we pro-
pose to aggregate LS-term interests adaptively according to the tar-
get item and the historical sequence. Here we investigate whether
this adaptive fusion is effective. To be specific, we compare with a
static version, which means using a fixed 𝛼 when combining the
two aspects. Figure 7 shows the recommendation performance on
two datasets, where the dashed line represents the performance of
adaptive fusion. We can discover that adaptive fusion outperforms
all different values of fixed 𝛼 . These results verify the necessity of
adaptive fusion of LS-term interests, and our proposed attention-
based network successfully accomplishes this goal.

To conclude, we conduct extensive experiments to show the
superior performance of the proposed CLSR model. Counterfactual
evaluations demonstrate that LS-term interests are successfully
disentangled. More experimental results are left in Section A.4.

5 RELATEDWORK
LS-Term Interests Modeling in Recommendation. Traditional
Markov chains-based methods [36] and advanced deep learning

models [17, 20, 24, 25, 30, 40, 41, 50, 55] fail to distinguish be-
tween LS-term interests, since a unified representation is insuf-
ficient to fully capture user interests. Therefore, several methods
[2, 11, 19, 29, 47, 48] were proposed that explicitly differentiate
between LS-term interests. For example, Zhao et al. [48] use matrix
factorization for long-term interests and use RNN for short-term
interests. Yu et al. [47] develop a variant of LSTM for short-term
interests and adopt asymmetric SVD [22] for long-term interests.
However, disentanglement of LS-term interests is not guaranteed
since these approaches impose no supervision on the learned inter-
ests representations. Unlike existing unsupervised approaches, we
propose a self-supervised method that attains stronger disentangle-
ment of long and short-term interests.
Self-supervised Learning inRecommendation. Self-supervised
learning [4, 7, 8, 12, 13] was recently adopted by several recom-
mendation algorithms [32, 45, 46, 52]. For example, Zhou et al.
[52] developed a self-supervised sequential recommender based
on mutual information maximization. And Ma et al. [32] proposed
to supervise sequential encoders with latent intention prototypes.
However, those methods ignore the differences between long and
short-term interests, which are crucial for accurate recommenda-
tion. In our paper, we design a self-supervised learning method to
disentangle long and short-term interests for recommendation.
Disentanglement in Recommendation. Disentangled represen-
tation learning in recommendation is largely unexplored until re-
cently [31, 42, 43, 49]. Ma et al. [31] propose to learn users’ multiple
preferences based on Variational Auto-Encoders. Wang et al. [42]
leverage Knowledge Graph to learn different user intentions and
regularize them to be differ from each other. However, most of
these works fail to impose specific semantics to the learned multiple
representations because of lacking labeled data, i.e. unsupervised
disentanglement, which has been shown to be ineffective [28]. In
this paper, we propose to disentangle with self-supervision by de-
signing contrastive tasks between the learned representations and
interest proxies extracted from the original interaction sequences.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose to disentangle long and short-term inter-
ests for recommendation with a contrastive learning framework,
CLSR. Extensive experiments and counterfactual evaluations on
two large-scale datasets demonstrate that CLSR consistently out-
performs SOTA baselines with significant improvements. More
importantly, we empirically show that unsupervised LS-term in-
terests modeling can easily entangle the two aspects and lead to
even poorer performance. With the help of self-supervision, CLSR
can effectively disentangle LS-term interests and achieve much bet-
ter performance. As for future work, CLSR can be easily extended
since it is a highly general framework, For example, other designs
of encoders or proxies can be explored. Deploying the proposed
method to industrial systems is another important future work.
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A APPENDIX
A.1 Datasets
We use two datasets to conduct experiments, including a public
e-commerce dataset and an industrial short-video dataset, which
are also adopted by the SOTA sequential recommendation model,
SURGE [6]. Both of them are in million scale and collected from
real-world applications.

The details of the adopted datasets are introduced as follows,
• Taobao3. This dataset [54] is collected from the largest e-commerce
platform in China, and it is widely used as a benchmark dataset
for recommendation research [34, 53, 54]. It contains the user
behaviors, including click, cart, and purchase from November 25
to December 3, 2017. We use the click data and adopt 10-core
settings to filter out inactive entities. To evaluate the recommen-
dation performance, we use all the instances till December 1 as
training data. We use the instances on December 2 for valida-
tion and evaluate the final performance with the instances on
December 3.

• Kuaishou4. This industrial dataset is collected from Kuaishou
APP, one of the largest short-video platforms in China. Users
can browse short videos uploaded by other users. We extract
a subset of the logs from October 22 to October 28, 2020. The
dataset contains user interactions with short videos, including
click, like, follow (subscribe), and forward. We use the click data
and also adopt 10-core settings to guarantee data quality. We
keep the instances of the first 6 days as training set, and reserve
the last day for validation (before 12 pm) and test (after 12 pm).

Table 5 shows the statistics of the two datasets after splitting.

A.2 Baselines
We compare the proposed approach with the following competitive
recommenders:
• NCF [16]: This method is the state-of-the-art general recom-
mender which combines matrix factorization and multi-layer
perceptrons to capture the non-linearity of user interactions.

• DIN [51]: This method uses attention mechanism to aggregate
the historical interaction sequences. Attention weights are com-
puted according to the target item.

• LightGCN [14]: This method is the state-of-the-art GCN based
recommender and it utilizes neighborhood aggregation to capture
the collaborative filtering effect.

• Caser [41]: This method regards the sequence of items as images
and extract sequential patterns with a convolutional network.

• GRU4REC [17]: This is the first approach that applies RNN to
session-based recommendation system, withmodifiedmini-batch
training and ranking loss.

• DIEN [50]: This method improves DIN by combining attention
with GRU to model the sequential pattern of user interests, and
takes interests evolution into consideration.

• SASRec [20]: This method is the state-of-the-art sequential rec-
ommendation model which utilizes self-attention to capture se-
quential preferences.

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
4https://www.kuaishou.com

Table 5: Statistics of the datasets.

dataset train validation test
Taobao 1,094,775 191,946 184,434
Kuaishou 12,925,390 641,580 1,385,689

Table 6: Performance of different 𝑘 on Taobao dataset.

𝑘 AUC GAUC MRR NDCG@2
1 0.8975 0.8927 0.4306 0.3717
2 0.8956 0.8938 0.4364 0.3798
3 0.8953 0.8936 0.4372 0.3788
4 0.8936 0.8924 0.4331 0.3747

• SURGE [6]: This is the state-of-the-art recommendation ap-
proach which utilizes graph convolutional networks (GCN) to
model user interest from sequential interactions.

• SLi-Rec [47]: This is the state-of-the-art algorithm which cap-
tures long-term interests with asymmetric-SVD andmodels short-
term interests with a modified LSTM.

A.3 Implementation Details
We implement all the models with the Microsoft Recommenders
framework [3] based on TensorFlow [1].We use the Adam optimizer
[21]. Embedding size 𝑑 is set as 40. We use a two-layer MLP with
hidden size [100, 64] for interaction estimation. Batch normalization
is enabled for the MLP, and the activation function is ReLU. The
maximum length for user interaction sequences is 50 for Taobao
dataset and 250 for Kuaishou dataset. We use grid-search to find
the best hyper-parameters. The optimal settings for our proposed
implementation are: 𝐿2 regularization weight is 1e-6. Batchsize is
500. Learning rate is 0.001. 𝛽 is 0.1. 𝑙𝑡 is 5 for Taobao dataset and 10
for Kuaishou dataset. 𝑘 is 3 for Taobao dataset and 5 for Kuaishou
dataset. Lcon is Ltri for Taobao dataset and Lbpr for Kuaishou
dataset.

A.4 More Studies on the Proposed Method
In this section, we conduct experiments to investigate how the
proposed method performs under different values of several intro-
duced hyper-parameters. We also include further ablation studies
on several components.
Short-term Proxy 𝑘 . In the proposed method, we use mean pool-
ing of the recent 𝑘 interacted items as the proxy representation
for short-term interests. Table 6 illustrates the results of different
𝑘 on Taobao dataset. We can observe that setting 𝑘 as 1 achieves
poorer performance except for AUC, which means only using the
last interacted item as proxy for short-term interests is not a good
choice since one interaction can be noise with large possibilities.
Interests Evolution Short-term interests are quite different from
long-term interests with respect to their dynamics over time, thus
we utilize a GRU to generate query vectors in Eqn (7) which sim-
ulates the evolution of short-term interests. We study the effect
of interests evolution and results are shown in Table 7. We can

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://www.kuaishou.com
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Table 7: Study of interests evolution.

Dataset Evolution AUC GAUC MRR NDCG@2

Taobao yes 0.8953 0.8936 0.4372 0.3788
no 0.8847 0.8884 0.4320 0.3735

Kuaishou yes 0.8563 0.8718 0.9382 0.9544
no 0.8202 0.8333 0.9226 0.9429

Table 8: Comparison of different design choices.

Dataset LSTM GRU Time4LSTM BPR Triplet

Taobao 0.8872 0.8860 0.8953 0.8909 0.8953
Kuaishou 0.8240 0.8259 0.8563 0.8563 0.8102

Table 9: Study of fusion predictor GRU on Taobao dataset.

Method AUC GAUC MRR NDCG@2
w/ GRU 0.8953 0.8936 0.4372 0.3788
w/o GRU 0.8817 0.8853 0.4275 0.3692

observe that removing interests evolution causes a significant de-
crease of accuracy on both datasets, which confirms the necessity
of modeling different semantics of LS-term interests.
Study of Different Design Choices We further compare differ-
ent design choices in CLSR. Specifically, we investigate different
options for short-term interests encoder and contrastive loss func-
tion in Eqn (14) and (25). For the RNN 𝜌 in the short-term interests
encoder𝜓 , we compare LSTM [18], GRU [9], and Time4LSTM pro-
posed by SLi-Rec [47]. For Lcon, we compare BPR loss and triplet
loss. Table 8 shows the results of different design choices. We can
observe that Time4LSTM outperforms LSTM and GRU on both
datasets, indicating that the time interval feature is helpful for LS-
term interests modeling, which is ignored by LSTM and GRU. As for
contrastive loss, each loss function fails to consistently outperform
the competitor, which can be explained by the different scales of
the two datasets. In fact, CLSR is a highly general framework in
which many sequential encoders and loss functions can be utilized.
We leave the further study as future work.
Fusion Predictor GRU. In the proposed adaptive fusion model
based on the attention technique, we incorporate both the target
item and the historical sequence to predict whether the next in-
teraction is driven by long or short-term interests. Specifically, we
adopt a separate GRU that takes the historical sequence as input,
and we use the final state as the input of MLP. We conduct ex-
periments to investigate whether taking the historical sequence
into consideration is necessary. Table 9 illustrates the results of the
proposed method with and without the fusion predictor GRU. We
can observe that removing the fusion predictor GRU makes the rec-
ommendation performance drop significantly, which confirms that
the importance of long or short-term interests is largely determined
by the historical sequence.
Attentive Encoder As introduced in Equation (11), the proposed
attentive encoder adopts a MLP to compute attention weights. The
inputs of the MLP are composed of the key vector, query vector,
the element-wise difference, and multiplication of key and query.
We compare the MLP based attention with simple inner product

Table 10: Study of attentive encoder on Taobao dataset.

Attention AUC GAUC MRR NDCG@2
MLP 0.8953 0.8936 0.4372 0.3788

Inner Product 0.8684 0.8706 0.4051 0.3480
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Figure 8: Counterfactual (truncate) evaluation of the pro-
posed method on Kuaisohu dataset.

Table 11: Training time cost on Taobao dataset.

Method GRU4REC SLi-Rec CLSR
Time 27.8min 26.7min 28.2min

based attention:
𝛼 ′
𝑘
= ⟨𝒗𝒌 , 𝒖𝒍 ⟩. (32)

Table 10 illustrates the comparison of MLP and inner product based
attention. Results in Table 10 show that MLP based attention out-
performs inner product-based attention with a significant margin,
which indicates that the relation between user interests and histor-
ical sequences is non-linear and can not be well captured by linear
operators like the inner product.
Discrepancy Supervision In our proposed method, we do not add
an extra discrepancy loss on the LS-term interests to make them in-
dependent with each other as other works [43, 49], since we believe
self-supervision is enough to accomplish disentanglement. During
our experiments, we tried to add an independent loss between the
two interests as, and AUC drops by 0.01, which verifies our point.
It is worthwhile to notice that many existing works [5, 32, 44] also
did not use the independent loss.
More Counterfactual Evaluations Figure 8 illustrates the AUC
of click and like on Kuaishou dataset with available history length 𝑘
varying from 50 to 250. Results on Kuaishou dataset are in line with
results on Taobao dataset in Figure 5(a). Specifically, AUC of like
is more sensitive to the length of available history and improves
drastically as 𝑘 increases, while AUC of click does not improve
much as we increase 𝑘 . Since like reflects more about the user’s
long-term interest, it is necessary to have access to the entire user
interaction sequence. Meanwhile, click is more about short-term
interest, and thus it can be largely captured from the recent history,
and looking back to early history will not bring further gains.
Complexity.We use a single GPU to compare the complexity. The
training time of CLSR and typical baselines on Taobao dataset are
shown in Table 11. The parameter scale of CLSR is comparable with
SLi-Rec (both takes 4.1Gb GPU memory).
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